Backward Reachability Analysis for Nonlinear Dynamical Systems via Pseudospectral Method

Myoung Hoon Lee, Jun Moon

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we propose a new approach to solving the backward reachability problem for nonlinear dynamical systems. Previously, this class of problems has been studied within frameworks of optimal control and zero-sum differential games, where a backward reachable set can be expressed as the zero sublevel set of the value function that can be characterized by solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). In many cases, however, a high computational cost is incurred in numerically solving such HJB PDEs due to the curse of dimensionality. We use the pseudospectral method to convert the associated optimal control problem into nonlinear programs (NLPs). We then show that the zero sublevel set obtained by the optimal cost of the NLP is the corresponding backward reachable set. Note that our approach does not require solving complex HJB PDEs. Therefore, it can reduce computation time and handle high-dimensional dynamical systems, compared with the numerical software package developed by I. Mitchell, which has been used widely in the literature to obtain backward reachable sets by solving HJB equations. We provide several examples to validate the effectiveness of the proposed approach.

Original languageEnglish
Pages (from-to)575-586
Number of pages12
JournalInternational Journal of Control, Automation and Systems
Volume19
Issue number2
DOIs
StatePublished - 2021 Feb

Keywords

  • Backward reachable set
  • nonlinear programming
  • optimal control
  • pseudospectral method

Fingerprint

Dive into the research topics of 'Backward Reachability Analysis for Nonlinear Dynamical Systems via Pseudospectral Method'. Together they form a unique fingerprint.

Cite this