A modified leap-frog scheme for linear shallow-water equations

Yong-Sik Cho, Sung Bum Yoon

Research output: Contribution to journalArticle

25 Scopus citations


A new leap-frog finite difference scheme is proposed to solve the linear shallow-water equations. The accuracy of propagation speed in diagonal direction is improved through the inclusion of frequency dispersion correction terms in linear shallow-water equations. The two-dimensional linear Boussinesq equations are recovered when the proper spatial grid size and time step size are chosen. As a result, more accurate simulation can be made for the transoceanic propagation of tsunamis. The scheme is stable when the Courant number is less than 0.866.

Original languageEnglish
Pages (from-to)191-205
Number of pages15
JournalCoastal Engineering Journal
Issue number2
StatePublished - 1998 Jan 1


  • Boussinesq equations
  • Leap-frog scheme
  • Shallow-water equations
  • Tsunami

Fingerprint Dive into the research topics of 'A modified leap-frog scheme for linear shallow-water equations'. Together they form a unique fingerprint.

  • Cite this